2023

BOTANY — HONOURS

Paper: DSE-A-1 and DSE-A-2

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Paper: DSE-A-1

(Biostatistics)

Full Marks: 50

1. Answer any five questions:

 2×5

- (a) What do you mean by conditional probability?
- (b) What do you mean by mode? Mention one advantage of mode.
- (c) Define sample and sampling.
- (d) What is null hypothesis?
- (e) State two limitations of biometry.
- (f) Differentiate between primary and secondary data.
- (g) Define co-efficient of variation.
- (h) What do you mean by frequency distribution?

2. Answer any two questions:

(a) Write a short note on uses of Statistics in Biology.

5

- (b) How different factors can alter the Hardy Weinberg equilibrium in a population?
- (c) What is Chi-square test? Describe its characteristics. What is degree of freedom? How do we calculate degree of freedom in Chi-square test?

 1+2+1+1
- (d) Find out the Standard error value from the following data set:

5

No. of leaves / plant	1-3	4-6	7-9	10-12	13-15	16-18	19-21
No. of plants	11	15	16	20	15	13	10

3. Answer any three questions:

(a) What do you mean by dependent and independent events? State the additive and multiplicative rules of probability with explanation. In a bag there are 6 red balls and 8 white balls. What will be the probability of taking out 1 red ball and 1 white ball in 2 consecutive events, without replacement of ball?
3+4+3

Please Turn Over

Z(5th Sm.)-Botany-H/DSE-A-1 & DSE-A-2/CBCS

(2)

(b) In a plant breeding experiment in F2 generation the following types of seeds were obtained:

Small and red seeds: 502 Small and white seeds: 171 Large and red seeds: 159 Large and white seeds: 48

Analyse the data statistically on the basis of Mendelian dihybrid ratio and comment on the genetic control of phenotypic characters of seeds.

(Chi-square value 7.82 at 3 degree of freedom at 0.05 probability level)

What is the utility of Chi-square test in plant breeding?

5+3+2

(c) Define genetic drift and mention two ways in which it can arise. What effect does genetic drift have on a population? A total of 6129 samples were blood typed for the MN locus, which is determined by two codominant alleles L^M and L^N. The following data were obtained:

Blood type	Number
M	1787
MN	3039
N	1303

Calculate the allele frequency value for the above.

2+2+2+4

(d) What are the different measures of Central tendency? Which one is statistically more accepted? Find out the *mean* and *standard deviation* from the following data:

No. of Seeds / Plant	17-19	20-22	23-25	26-28	29-31	32-34	35-37	38-40
No. of Plants	8	15	18	21	26	19	12	7

(3+1)+(3+3)

(e) Distinguish between the following (any four):

 $2\frac{1}{2} \times 4$

- (i) Population parameter and Sample statistic
- (ii) Cumulative frequency and Relative frequency
- (iii) Mean deviation and Standard deviation
- (iv) Normal distribution and Binomial distribution
- (v) Allele frequency and Genotype frequency.

Paper: DSE-A-2

(Industrial and Environmental Microbiology)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

	(a)	Why is eutrophication considered to be a problem?	
	(b)	What are the industrial uses of amylase?	
	(c)	Define bioventing	
	(d)	What is Hartig net? State its function.	
	(e)	Name one free living and one symbiotic N2-fixing microbe present in soil.	
	(f)	What are fluidized bed bio-reactors?	
	(g)	What is dilution plate method?	
	(h)	Explain reverse osmosis.	
2.	Wri	ite short notes on (any two):	5×2.
		Air lift fermenter	52

- (b) Water bloom
- (c) Biological Oxygen Demand.

3. Answer any three questions:

1. Answer any five questions:

- (a) Write down the role of microbes in domestic sewage treatment system. State the differences between primary and secondary waste water treatment methods.

 5+5
- (b) Discuss the process of isolation of microorganisms from water. State the different types of microorganisms that occur in air with examples. What is droplet nuclei and bioaerosol?

5+3+1+1

 2×5

- (c) Describe the different types of mycorrhizae. How does arbuscular mycorrhiza colonize in plant roots?
- (d) Discuss the fermentation conditions and process of industrial production of citric acid. Discuss the use of ultrafiltration and centrifugation in industrial microbiology. $7+(1\frac{1}{2}\times2)$
- (e) Distinguish between cell disruption and solvent extraction. What are bio-reactors? What are its different types? State the limitations of fixed bed bioreactors.

 3+2+3+2